深度学习简介及单词的向量化表示

Content

  • 深度学习简介
  • NLP与深度学习
  • 单词的向量化表示

1. 深度学习简介

首先应当明确的是,深度学习是机器学习中的一个领域。然而与传统机器学习所不同的是,传统的机器学习的重点在于特征的设计。在设计过特征之后,就变成了研究如何调整权重、优化参数来得到一个最优的结果。

图片1

然而特征设计所涉及的知识、经验的储备往往只有博士级别的研究人员才能够得心应手,而且特征设计的优劣往往直接影响最终的分类结果。与之相反,深度学习应用的是多层特征学习,其中特征学习指的是计算机能够自动地学习到特征的表示,这就解决了手工选择特征局限性较大的问题。深度学习提供了一个近乎统一的框架。它够表达各种信息,能够自动学习,并且非常灵活。这个框架也同样支持监督学习与非监督学习两种学习方式。

除此之外,深度学习还具备以下特点:

  1. 数据量增大时,深度学习的获益更多;
  2. 能够利用多核CPU、GPU加速
  3. 不断涌出的新模型、新算法
  4. 最终性能的提升

2. NLP与深度学习

事实上,在NLP领域,深度学习已经开始展现它的威力了。在应用方面,机器翻译、情感分析、问答系统等都依靠深度学习取得了重大的进步;而在NLP的各个层次上,例如语音识别、形态分析、句法分析、语义解释等,深度学习也发挥了重要的作用。接下来

选区_006

语音

在语音层面,传统的表示形式采用了表格的形式来表示每一个音素。而在深度学习中,将每一个音素表示为向量。

字形

对于一个单词来说,传统的表示形式将词根、前缀和后缀分开表示,例如un-interest-ed。而在深度学习中,往往将一个词素表示为一个向量。

图片3

句法

传统的表示方法会显示地标注出每一个短语的具体类别,例如VP、NP等。而在深度学习中,会将一个词或短语均表示为向量。

语义

lambda演算是一种在语义层面的传统表示方式。例如,将likes视作接受两个参数的函数,每一次合并都相当于柯里化的过程:

图片4

而在深度学习中,仍然将语义表示为向量的合并。

可以看出,向量形式是NLP中所有层次的表达形式。


3. 文本的向量化表示

意义

语言文字或一些符号具备一定的意义。例如,苹果和apple所指代的意义相同。而对于一个外星人来讲,■△▲〓※↓↑〓↓说不定就代表“苹果”。因此,如果想要让计算机理解这一层意义,那么它也需要一种表示;反之,如果我们认为某种表示是计算机所理解的“苹果”,那么即便我们无法阅读(例如■△▲〓※↓↑〓↓),这也是在合理范围之中的。

意义在计算机中的表示

一种表达意义的方式是利用同义词和上位词。例如,熊猫属于动物一类,我们可以用“动物”来表达熊猫的某些方面的意义。再比如,good和well有时意义相近,那么我们可以用well来代表good的某些方面的意义。

然而,这样的表示的问题在于:

  • 缺乏语义差别的信息
  • 难以适应新词
  • 主观
  • 需要人工标注
  • 相似度难以计算

究其根本原因,在于这种方式将单词视为了一种原子符号。或者说,如果在向量空间中对其进行表示的话,我们把它叫做one-hot:

选区_007

one-hot的问题在于,无法表示单词之间的意义相近的关系。例如,hotel和motel两个词,如果利用one-hot形式来表示的话:

hotel  = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

motel = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

我们无法使用向量运算来获得它们之间意义上的相似度。

You shall know a word by the company it keeps.

–J.R.Firth

J.R.Firth是50年代著名的语言学家,他的这句话被誉为当代NLP领域中最成功的思想之一。对于一个单词的意义,较好的方式是考虑它的上下文。

图片5

而这个“上下文”,则有不同的范围可以选择:其一是将整个文档作为上下文,另一种是选择一个较小的固定的窗口作为上下文。对于“全文档共现”来说,单词向量的维数是文档的个数,如果这一单词在某一篇文档中出现,则该维置1。全文档共现的方式能够挖掘单词的隐含语义。例如,对于“足球”和“教练”来说,它们很有可能在多篇文档中共同出现,则它们的向量也有多维同为1;如果取and的话,就可以获得它们之间的相似程度。

而对于基于窗口的共现来说,其能够同时获得语法与语义的信息。下面我们通过一个例子来看一下基于窗口共现方式的词向量学习过程。

我们选取三句话:

  • I like deep learning.
  • I like NLP.
  • I enjoy flying.

窗口大小取为1,即向前看1一个词、向后看1个词,窗口中一共3个词。通过对共现次数的计数,可以得到以下的矩阵:

图片6

我们可以发现,这个矩阵有这样的几个问题。一是维度过高,它与整个vocabulary相关,因此维度也会随着词汇量的增加而增加;而是矩阵十分稀疏,这将导致难以训练出有效的模型。我们可以通过两种方法来降低词向量的维度:一是用数学方法对这个矩阵进行降维(如SVD奇异值分解);或是不通过这个矩阵,而是直接估计出词向量。

SVD奇异值分解

通过SVD分解,可以将一个mxn的矩阵分解为3个维度分别为rxn、rxr、mxr的矩阵。我们所需要的词向量信息都存储在第一个rxn的矩阵当中。第二个rxr的矩阵是一个对角矩阵,通过调整对角线上的数值可以对第一个rxn矩阵的列进行排序,从而让比较重要的维排在前面。

图片7

使用numpy可以很容易地进行SVD分解计算:

U, s, Vh = numpy.linalg.svd(X, full_matrices=False)

下图是取前两维生成的plot:

图片1

可以看出,相对相近的单词距离更近。

使用SVD方法时,可以进行一些hack,例如通过阈值或过滤的方法对停用词进行处理、添加权重、使用Pearson相关系数代替count等。

图片2

然而,SVD奇异值分解有一些弊端。例如,计算复杂度与m×n相关、难以加入新的单词等。最后,它与深度学习的审美不同:深度学习通常追求从某一个例子中学习一些东西然后再移动到下一个,而SVD方法却需要对所有语料进行整体地处理。

直接学习低维向量

除了利用SVD方法把高维矩阵降维处理外,还可以直接学习低维向量。例如word2vec,他直接预测每个单词相邻单词的概率。除了word2vec,2014年出现了Glove: Global Vectors for Word Representation. Pennington et al. (2014)。它们可以向语料库中不断添加新词。

word2vec的核心思想是:当窗口长度为c时,预测与中心词共现的单词。其目标函数为:

图片3

其中p为

图片4

然而当单词量增大后,其计算将会变得缓慢。因此,我们可以通过采取采样、简化概率函数等方式进行近似。

  基于频数的方法 直接预测方法
优势 训练速度快充分利用了统计信息

性能更好可以获得到比单词相似性更复杂的信息

劣势 主要用来获得单词之间的相似度当频数较少时,获得的比重不合适

与语料库的大小有关没有利用统计信息

 

Reference

http://cs224d.stanford.edu/

Default Comments (0)

发表评论

电子邮件地址不会被公开。 必填项已用*标注

Disqus Comments (0)

dontpanic92-cn